Güç Kaynakları etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
Güç Kaynakları etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

28 Mayıs 2024 Salı

DC güç kaynağı için suni yük (dummy load) denemeleri

Son güncelleme: 17.11.2024

DC güç kaynağı için suni yük de nedir, ne işe yarar diyenler olacaktır; yakın zamana kadar ben de böyle düşünürdüm. Ama, onlarca amper akıma ihtiyacı olan bir cihazınız varsa -mesela bir alıcı-verici telsiz cihazı- ve bu cihazı beslemek için hazır bir güç kaynağınız yoksa ne yaparsınız? Ki 20W ve üstü çıkış gücü olan bir telsiz için amper hanesinin onlar basamağına geçmesi gereklidir. Böyle bir cihaz için 13,8v, 20A. lik bir güç kaynağı iyi bir seçim olacaktır.

Bu sorunun iki cevabı var: Ya SATIN alırsınız, ya da -eğer elektroniğe meraklı birisi iseniz- oturup kendiniz yaparsınız. 

"Güç Kaynakları: Eski usûl doğrusal (lineer) mı yoksa anahtarlamalı (SMPS) mı? Güç kaynağı hikâyem." başlıklı yazımda belirttiğim üzere, doğrusal güç kaynakları hantaldır, ısı problemleri vardır, yüksek güçlü bir transformatör, bir kaç bin uF'lık elektrolitik kondansatörler, güç transistörleri derken hantal olmanın yanında "pahalı" çözümlerdir. Anahtarlamalı güç kaynakları tersine hafif ve görece ucuz cihazlardır. Ama... evet burada bir ama var. Bu amayı yukarıdaki yazımda okuyabilirsiniz.

İster satın alın isterseniz kendiniz yapın, eğer "sağlamcı" iseniz, güç kaynağınızın gerçekten belirtildiği kadar akım verip veremeyeceğini "test" etmek isteyeceksiniz. Bu testi pahalı telsiz cihazınızı yük olarak kullanarak yapmak akıllıca olmayacaktır. İşte bu noktada devreye DC güç kaynağı için suni yük giriyor. Aşağıdaki çizimde güç kaynağımız PİL olarak, beslemesine ihtiyaç duyduğumuz telsiz cihazı da YÜK olarak gösteriliyor. 

Böyle bir devredeki akım, gerilim, direnç ve güç hesaplamaları için de aşağıdaki formül kartını kullanabiliriz.



Şimdi deneysel olarak ölçme işlemi yapalım.
Güç kaynağımızın gerçekten 20 amper akım sağlayabileceğinden emin olmak için, ondan 20 amper akım çekmeliyiz! Peki 20 amper akımı nasıl çekebiliriz? Yukarıdaki formül kartına göre, 13,8v gerilim değerindeki bir güç kaynağından 20 amper akıtabilmek için devreye R=E/I formülüne göre 13,8/20=0,69 Ohm'luk bir yük bağlamak gerekiyor. 
Aklınıza hemen "bundan kolay ne var, 0,68ohm standart bir direnç değeri, bağlarım bir direnç olur biter" demek geliyor (mu) !? İşte burada da GÜÇ denilen rufaî devreye giriyor. Yine yukarıdaki formül kartına göre P=ExI eşitliğinden 13,8x20 = 276W'lık bir güçle karşı karşıya olduğumuzu anlıyoruz. Yani yük olarak bir direnç kullanacak isek bu direncin en az 276W'lık olması gerekiyor. 
Şöyle bir baktım, 2.2ohm 100W'lık alüminyum dirençler var, bunlardan 3 adedini paralel bağlar isek hem 300W'lık hem de 0,73 ohm'luk bir direnç elde edebiliriz. 0,73 ohm 0,69 ohm'a yakın bir değer. Ama böyle bir direncin 28 mayıs 2024 tarihindeki fiyatı oldukça tuzlu!

3 direnç için yaklaşık 1.600 lirayı gözden çıkarmak gerekiyor.
Bu arada söylemek gerek ki, ayarlanabilir suni yükler de satılıyor ama bunlar da oldukça x oldukça tuzlu.
Bu süreçte aklıma çeşitli çözüm taslakları geldi: Elektrikli ısıtıcılarda kullanılan nikrom telden bir direnç yapmak, tuzlu su dolu bir kovanın içine iki elektrot sallandırıp bu elektrotların mesafesini ayarlayarak bir nevi ayarlanabilir ve yüksek güçlü direnç elde etmek ... gibi.

Ampuller
Sonra gözüme ampul kutum ilişti. Çeşitli araba ampulleri vardı. Bunlar birkaç amper çeken birer yük olarak kullanılabilirdi! Kutuda iki adet H7 klâsik  flamanlı araba far ampulü vardı.
55W'lık otomobil far ampulü

Bu ampul, 55w'lık olduğuna göre I=P/E eşitliğine göre 55/12=4,58 amper akım çekebiliyordu. Yine R=E/I eşitliğine göre direnci de 12/4,48=2,62 ohm olmalıydı. Elbette lambanın flamanı ısındıkça direnci bir miktar değişecekti. Ayrıca benim güç kaynağım da 12 v değil 13,8v gerilim seviyesinde idi. Ama arabalar için üretilen elektrikli cihazlar genellikle 13,8v'luk bir gerilim seviyesine dayanıklı şekilde üretilirler. Bu ampulleri 13,8v'a bağlayarak çektiği akımları da ölçebilirdim. 2 ampul demek yaklaşık olarak 9 amperlik bir akım çekebilen bir suni yük demekti!
13,8v altında bu ampullerden birisinin 4,23 amper akım çektiğini ölçtüm.
Elinizde böyle eski flâmanlı tipte araba ampulleri varsa, ölçmek istediğiniz akım değerine göre bunlardan birini ya da birkaçını kullanarak bir suni yük oluşturabilirsiniz. Ancak, bu denemeleri yaparken dikkat etmek gereken birkaç nokta var:
1) Bu ampuller tam güçte çalışırken oldukça yüksek ısı üretirler. Bir H7 ampulü, tam güçte çalıştıktan birkaç dakika sonra yüz derecenin üstüne çıkar. Bu sebeple bu ampulleri çalıştırırken yangına karşı gerekli tedbirleri almalısınız.
2) Yine bu ampuller oldukça güçlü ışık ürettikleri için ışık kaynağına doğrudan çıplak gözle bakmayınız.
Benim yaptığım denemede, 3 dakika içinde ampulün cam kısmının sıcaklığı 145 santigrad dereceye ulaştı. 15 santimetreden ölçülen parlaklığı ise yaklaşık 5500 lüks!
Araba ampulünü sunî yük olarak kullanma fikri, elinde kullanılmayan ampul olanlar için geçerli elbette. Aksi takdirde -ısı ve ışık gibi diğer negatif cihetleri yanında- bu ampuller de birazcık tuzlu.
Nikrom Tel
Elektrikli ısıtıcılarda kullanılan nikel-krom (nikrom) alaşımı tellerin özdirençleri oldukça yüksektir. Piyasa ismiyle "rezistans" olarak bilinen bu telleri de denemek istiyorum.
Elektrik malzemesi satılan yerlerde bulunabilen nikrom teller çoğunlukla 220v.'luk gerilim altında çalışan cihazlar için üretildiğinden, dirençleri görece yüksektir.
1500W'lık diye satılan iki adet nikrom tel aldım. Spiral şeklinde sarılmış tek bir 1500W'lık telin direnci 31,6 ohm idi. Yukarıdaki eşitlikten hareketle bu teli yük olarak kullandığımda I=V/R eşitliğinden 13,8/31,6=0,436 A akım akacaktır. 
Peki bu tellerle 20A çekebilen bir yük nasıl yapılabilir (mi)?
Yukarıda belirtildiği üzere 13,8v gerilim değerindeki bir güç kaynağından 20 amper akıtabilmek için devreye R=E/I formülüne göre 13,8/20=0,69 Ohm'luk bir yük bağlamak gerekiyor. 1500W'lık olarak satılan nikrom telin direnci 31,6 ohm olduğuna göre 0,69 ohm'luk bir direnç elde edebilmek için bu tellerden 31,6/0,69=45,79 (yuvarlak olarak 46 adedini) paralel bağlamak gerekir. ÇOK FAZLA!
Bir başka çözüm yolu daha var! Bu tellerin boyunu kısaltmak. Telin boyu kısaldıkça direnci de düşecek ve daha çok akım çekecektir. Ancak teli kısaltmanın bölmekten başka bir yolu daha var: TELİ KATLAMAK!  Böylece hem telin boyu kısalarak direnci düşer ve hem de toplam tel kalınlığı -yâni tel kesiti- artmış olacağı için daha yüksek akıma dayanıklı hâle gelir.
Şimdi düşünelim: Bir teli 2'ye katladığımızda direnci ne olur? Şöyle düşünelim: 31,6 ohm olan telin boyu 4 metre. Bunu 2 metrelik iki parçaya ayırdığımızda 2'şer metrelik iki adet nikrom tel elde ederiz. 2'şer metrelik her bir telin tek başına direnci 31,6/2=15,8 ohm olacaktır. Bu iki teli bir arya getirip burduğumuzu ve uçlarını birleştirdiğimizi düşünelim. Bu durumda dirençlerin paralel bağlamasına ilişkin formül uyarınca her ki telin yeni ortak direnci 15,8/2=7,9 ohm olacaktır. Üstelik iki kat telimiz olduğu için toplam tel çapı iki kat artmış olacak ve teller daha az ısınacaktır.
2'ye katladığımız bu telleri bir kez daha ikiye katlarsak (yâni toplam 4 kat) yeni ortak direnç değeri:
1/Rtoplam=1/R1+1/R2+1/R3+1/R4 eşitliğinden:
1/Rtoplam=1/7,9 + 1/7,9 + 1/7,9 + 1/7,9
 1/Rtoplam=4/7,9 ve buradan da R= 1,975 Ohm olacaktır.
İki ader 150W'lık nikrom telin her birini 4'e katlayıp bu iki katlanmış teli birleştirdiğimizde, yeni telin direnci:
1/Rtoplam=1/1,975 + 1/1,975 
1/Rtoplam=2/1,975
R=0,9875 Ohm olacaktır.
Böylece limizde kesiti 8 kat arttırılmış, direnci 32 kat düşürülmüş bir tel olacaktır. Yâni  direnci 0,9875 ohm olan bir tel.
Bu yeni telin yük olarak kullanılması durumunda çekeceği akım ise 13,8/0,9875=13,9A olacaktır.
Şimdi bu tellerle denemelere başlayacağım. Sonuçları burada paylaşacağım.
Nikrom telin iyi / kötü tarafları
Nikrom tel, yüksek iç direnci sebebiyle YÜK olarak kullanmak için iyi. Ancak, Yüksek akım tüketiminde bu teller ısınır ve ısındıkça da direnci değişir. Bu körü taraflarından birisi. Bir diğer ise bu telleri sunî yük olarak kullanırken mekanik zorluklar. Telin kendisi sert olduğu gibi katlanıp buruldukça daha da sertleşiyor. Bu bir yandan iyi, diğer yandan kötü. Zira bu yükün mekanik olarak sağlam bir hâle getirilmesi gerekiyor. Bunun için de aklıma gelen birka çözüm var. 
Bunlardan birincisi bu kalınca burulmuş nikrom teli sıcaklığa dayanıklı yalıtkan bir karkasa sarmak. En iyisi bir seramik boru parçası bulup onun üzerine sarmak. Ama seramik bir boru bulmak kolay değil.
İkinci bir çözüm yolu olarak burulmuş nikrom teli alçı içine alarak dondurmak. Ama bu çözümün ne kadar sağlıklı olabileceğini, ortaya çıkan ısının nasıl problemler çıkaracağını kestiremiyorum.
Ne kadar ısınacak?
Yukarıda belirttiğim gibi burularak 4'e katlanmış bir telin direnci yaklaşık 2 ohm'dur.
Bu burulmuş teli, güç kaynağına bağladığımda ısınmaya başlıyordu. Ama kızarmıyordu. Bundan da cesâret alarak şöyle bir "puroce"(!) devresi kurdum:

Görüldüğü gibi burulmuş nikrom teli gevşek bir şekilde bir karton kutunun etrafına sardım. Bu yük üzerinde 6 amper akıtmaya bağladım. Başlangıçta telin sıcaklığı 26 derece idi.
10 dakika 6 amper aktıktan sonra tekin sıcaklığı 83 dereceye yükseldi ve 1-2 derece oynamakla birlikte orada sâbit kaldı. 

Bir başka yol
Bu konulara kafa yorarken bir başka çözüm yolu geldi aklıma: Küçük değerli watlı dirençleri paralel bağlayarak yüksek güçlü ve çok düşük dirençli bir tek direnç hâline getirmek. Yukarıda, yüksek güçlü tek bir direncin oldukça tuzlu olduğunu belirtmiştim. Ancak, 5w'lık taş dirençleri uygun fiyata bulmak mümkün. Direnç nette tânesi 2.18TL'dan buldum. (2024 yılı sonu fiyatıdır)
5W'lık taş dirençler
Bunun için bir hesap yaptım ve 56 adet 39 ohm 5W'lık taş direnç aldım. Bu dirençleri paralel bağladığımızda toplam direnç 0,697 Ohm olacak. Toplam güç de elbette 280W!
0,697 Ohmluk bir direnç 13.8V'luk bir kaynaktan 13.8/0,697= 19,79 Amper akım çekecektir.
Her bir direnç üzerinden -ideal şartlarda- 19,79/56=0,354 Amper akım akacaktır. Yine her bir direnç üzerinde harcanan güç (P=I2*R eşitliğinden) 4.89 Watt olacaktır.
Şimdi bu dirençleri uygun bir şekilde paralel bağlayarak deneyeceğim.
  
5W'lık taş dirençlerin paralel bağlanmış hâli

Dirençleri önce birer ucundan 4mm'lik bir bakır tele sardım, sonra iki ekmek dilimini kapatır gibi yüzyüze getirdim ve önceden yuvarlak bir şekilde kıvırdığım diğer uçlarına da bir başka 4mm'lik bakır tel geçirdim ve uçlarla teli lehimledim.
Bu hâliyle yükü 30 amperlik bir SMSP güç kaynağına bağladım. 19,5 amper akmaya başladı. Ancak, bu dirençleri düzgün bir şekilde lehimlemek için biribirine japon yapıştırıcı ile tutturmuştum, dirençler iyice ısınınca japon yapıştırıcı kötü bir şekilde kokmaya bağladı ve deneyi uzun süreli ölçüm yapamadan sona erdirdim. Havalandırılmış bir ortamda yapıştırıcı iyice "yanıncaya" kadar akım akıtıp sonra ölçümlü deney yapacağım. 


(Devam edecek)

27 Ocak 2024 Cumartesi

Âcil duruma hazırlık

Güncelleme : 5

 Geçenlerde basında şöyle bir haber yer aldı:

'İngiltere Başbakan Yardımcısı Oliver Dowden, bir felaket sonucu internet ve güç sistemlerinin çökmesi durumunda insanları 'analog' bir çağa geri dönmeye hazırlanmaya çağırdı. Dowden, insanların internete çok fazla bağımlı hale geldiklerini ve bu durumun onları bir felaket sırasında bilgi boşluğunda yalnız bırakabileceğini öne sürerken, "Herkesin pille çalışan bir radyoya erişebilmesi her zaman geçerlidir" dedi. Gelecekte yaşanabilecek salgınlara, doğal afetlere ve siber saldırılara karşı uyarılarda bulunan Dowden, İngiliz vatandaşlarına mum ve pilli radyoları stoklama çağrısında bulundu.'

Bu aslında herkesin her an aklında olması ve uygulanması, uyulması gereken bir ikaz; en çok da radyo amatörlerinin. Zira, radyo amatörleri âfet zamanlarında önemli görevler yerine getirirler.

Elektriğe ve internete öylesine alıştık ki, bunlarsız bir hayat düşünemez hâldeyiz. Ama gerçeğin yüzü dâima soğuktur. Bu konuda her zaman âcil durumlara hazırlıklı olmalıyız. Bir düşünün, elektriğin birkaç saat kesilmesi hâlinde hayatınız nasıl da zorlaşıyor. Bir de elektriğin günlerce hatta haftalarca olmadığı durumları düşününce bâzı tedbirler almak kaçınılmaz hâle geliyor. Peki neler yapılabilir?

1) Elektrik enerjisi kaynağı

a) Benzinli jeneratör: En iyisi bir benzinli jeneratöre sâhip olmaksa da, pek çoğumuzun yaşadığı şehirlerde ve hele hele apartman ortamında bir jeneratöre sâhip olması ve olsa bile çalıştırması oldukça zordur. Eğer müstakil bir eviniz varsa, bir köşesinde bir benzinli jeneratör bulundurmak en iyi çözümlerden birisidir.

b) Güneş enerjisi sistemi: Fiyatları gittikçe daha uygun hâle gelen güneş pilleri ve bu pillerin doldurduğu akü(ler) ile oluşan bir güneş enerjisi sistemi de oldukça faydalı bir enerji kaynağıdır. Ancak (a) başlığı altında yazdıklarımız burada da geçerli olup, şehir ve apartman hayatında böyle bir sistemi kurmak da oldukça zordur.

Ancak, pencere dışına koyabileceğiniz yaklaşık A4 kağıt ebadında bir güneş pili, buna uygun bir güneş pili şarj kontrol devresi ve 12v'luk bir akü ile  apartmanlarda da küçük çaplı aydınlatma ve haberleşme ihtiyaçları için bir acil durum enerji sistemi oluşturabilirsiniz. Güneş pili ve güneş pili kontrol devrelerinin fiyatı görece uygun hâle geldi.

c) Çeşitli aküler (doldurulabilir piller): En kolay ulaşılabilecek çözüm yolu bu gibi görünüyor. Elinizde 12v 7AH'lik bir veya birkaç akü varsa, bunları dolu durumda tutup, âcil durumlarda az da olsa aydınlatma ve haberleşme ihtiyacınızı karşılayabilirsiniz. Ben evimde (2) adet 12v. 9Ah'lik bakımsız akü bulunduruyor ve düzenli olarak bakımlarını yapıyorum. Eğer HF telsiz cihazınızı beslemek istiyorsanız daha yüksel kapasiteli aküler elbette çok daha iyidir. Bu arada, fiyatları gittikçe dayanılabilir hâle gelen LiFePO4 (Lityum Demir Fosfat) aküleri de akılda tutmakta fayda var.

Bu arada, bir hususu ehemmiyetle belirtmek istiyorum:  "Ucuz etin tiridi olmaz" sözü çok doğru bir tesbit. Özellikle söz konusu akü olduğunda, ne idüğü belirsiz akü markalarından uzak durmanızı şiddetle tavsiye ediyorum. (Tebrübeyle sâbittir)

Yuasa 12v 7Ah Akü

Böyle bir aküyü yukarıda (b) başlığı altında belirtilen bir güneş pili sistemine bağlayarak sürekli dolu durumda tutabilirsiniz.

ç) Doldurulmayan piller: Bu piller birkaç yıllık saklama ömrüne sahiptir. Pilli bir radyonuz  ve el feneriniz varsa, bu cihazları çalıştırabilen pillerden serin ve kuru bir yerde saklamanız iyi olacaktır. Burada dikkat edilmesi gereken husus pillerin son kullanma târihine dikkat etmek olacaktır.

2) Haberleşme aracı

a) Pilli radyo: Pilli radyodan kasıt, standart pillerle çalıştırılabilen küçük radyolardır. Bir DC adaptörle çalıştırılabildikleri gibi pille çalıştırabilmek için pil yuvalarına da sâhiptir bu radyolar. son zamanlarda bu radyolar şarj edilebilir pilli (genellikle li-polimer) olarak bulunuyor.

Bu radyoların FM (VHF 3 metre) bandındaki mahallî yayınları dinlemek yanında, özellikle orta ve kısa dalga yayınlarını alabilecek olmaları önemlidir.

b) Âcil durum frekanslarında haberleşebilecek telsiz cihazı: Sâdece amatör telsizciler için gerekli bir âcil durum cihazıdır. Yerel haberleşme için VHF ve UHF bandlarında, ülke ve dünya çapında haberleşme için HF banında çalışan telsiz(ler) gereklidir.  Bu telsizlerin bir akü yardımı ile çalışabilecek şekilde güç kablolarının önceden hazırlanmış olması gereklidir. Ayrıca VHF ve UHF bandında çalışabilen el telsizi de son derece gerekli bir âcil durum cihazıdır.

3)  Âcil aydınlatma aracı:

a) El feneri: Pilli bir el fenerinin elinizin altında bulunması son derece faydalıdır. Ayrıca, bir akü ile çalışan 12v'luk bir veya birkaç LED lambanın el altında bulundurulması iyi olacaktır.

12v'la çalışan LED kamp lambası
b) LED lamba: 12v.'la çalışan ve 12v.'ta 340mA akım  çeken yukarıdaki "kamp lambası" oldukça etkili bir aydınlatma aracı olacaktır. Araya bağlanacak seri direnç ile parlaklıktan  tâviz vererek akım sarfiyatını azaltabilirsiniz.
Ayrıca, 12v.'la çalışan şerit ledlerden istenildiği kadarı kesilerek kendinize bir lâmba yapabilirsiniz.

c) Mum, kibrit ve çakmak: En zor zamanların dostu mumları ve mumu yakmak için kibrit veya çakmağı unutmamak gerekiyor.

Bir aradevre

12v'luk aküden hem âcil aydınlatma, hem de HF telsiz hâriç radyo ve el telsizlerinin enerji ihtiyaçlarını karşılamak üzere bir aradevre kurdum.

Aradevrenin blok şeması

Devrede, hazır bir volt-ampermetre kullandım. Devrenin ek akım çekmesini önlemek için devre sâdece SW3 tuşuna basıldığında akü gerilimini ve çekilen akımı göstermektedir. Böylece akünüzün gerilimini ve çekilen akımı öğrenerek akünüzün ne kadar süre dayanabileceğini kestirebilirsiniz.

Devrede (2) adet 5v. luk gerilim düşürme devresi vardır. Bunlardan birincisi 7805 tümdevresini kullanan doğrusal bir devredir. SMPS devresinin anahtarlama gürültüsünden korunmak için bu yol seçilmiştir. Bu çıkış küçük radyoları beslemek için düşünülmüştür. Elimde bulunan Sony radyoların bâzıları (meselâ ICF-SW7600GR) 6v'luk, bâzıları da (meselâ ICF-SW40) 4.5v'luk ac/dc adaptörlerle çalışabildiğinden, 5v'luk bir çıkış gerilimi seçilmiştir. Bu gerilim hem 6v, hem de 4,5v'luk radyoları çalıştırmak içi uygundur. Doğrusal regülatör devresi SW1 anahtarı ile devreye sokulabilmektedir.

Siz elinizde olan radyonun çalışma gerilimine uygun bir tümdevre kullanarak çıkış gerilimini 9v'a kadar değiştirebilirsiniz. (78xx serisi gerilim regülatörlerinin düzgün çalışabilmesi için giriş geriliminin çıkış geriliminden en az 3v. yüksek olması gereklidir. Akünün 12v. olduğu dikkat alınınca 12-3=9v. 78xx sersi bir regülatörle elde edilebilecek en yüksek gerilimdir. Eğer radyonuz 12v. ile çalışıyorsa, 78xx'li regülatör devresine gerek olmadan ve güvenlik için araya uygun değerli bir sigorta koyarak akü gerilimini doğrudan kullanabilirsiniz.)

İkinci gerilim düşürme devresi LM2596 tümdevresini kullanan ve piyasada kolayca bulunabilen bir SMPS devresidir. Bu devre de 5v. çıkış verebilecek şekilde ayarlanmış ve çıkışı USB-A dişi sokete bağlanmıştır. Bu çıkış bir el telsizi veya benzeri devrelerin akülerini doldurmak amacıyla kullanılabilmekte ve SW2 anahtarı ile devreye sokulabilmektedir.

 LM2596 tümdevresi ile çalışan gerilim düşürme devresi modülü

Devredeki 2A'lik sigorta hem volt-ampermetreyi ve hem de çıkışa bağlanan cihazları korumak üzere akımı 2A'de sınırlamaktadır.

Yukarıdaki blok şemaya uygun olarak gerçekleştirdiğim aradevre

15 Haziran 2023 Perşembe

Güç Kaynakları: Eski usûl doğrusal (lineer) mı yoksa anahtarlamalı (SMPS) mı? Güç kaynağı hikâyem.

 Pil ve akü gibi kimyevî güç kaynakları ayrı tutulursa, eskiden şebeke elektriği ile bir devreyi beslemek için klâsik doğrusal güç kaynakları kullanılırdı. Bu kaynaklarda, şebeke elektriğinin gerilimi önce bir transformatör vasıtasıyla düşürülür, sonra alternatif akım diyotlarla doğrultulup kondansatörlerle süzülüp regüle devreleriyle istenilen gerilime ayarlanarak maksada ulaşılırdı. Bu sistemin en büyük dezavantajı transformatör kayıpları ve çekilecek akıma göre büyük ve ağır transformatörler kullanmak ve ortaya çıkan ısıyı iyi bir soğutma sistemiyle dağıtmak idi. Hele hele 10 amper ve üstü akım gerektiren alıcı-verici devrelerinde kullanılacak transformatörün ağırlığı ve dolayısıyla fiyatı oldukça ehemmiyetli bir yer tutuyordu. İşte bu "istenmeyen tüyleri" yok etmek için anahtarlamalı güç kaynakları ortaya çıktı. Burada, osilatör devreleri ile  şehir şebekesinin 50 Hz'lik frekansından onlu kilohertzlerden yüzlü kilohertzlere -hatta megahertzlere- kadar üretilen alternatif akım, kullanılan frekansa nisbeten küçük ve ferrit gibi çekirdekleri olan transformatörler kullanılarak daha düşük gerilim seviyelerine düşürülmekte, daha sonra doğrultulup regüle edilmektedir. 

Böylece, onlarca kiloluk transformatörlerin yerini birkaç yüz gramlık transformatörler alınca, "tüy gibi" ve yüksek güçlü güç kaynakları üretmek mümkün oldu. Bugün bilgisayarlarımızın güç kaynakları işte bu anahtarlamalı (Switched Mode Power Supply) tiptedir.

Anahtarlamalı güç kaynakları artık hayatımızın her alanında var: Cep telefonlarımızın doldurma aletlerinden bilgisayarlarımıza, televizyonlara kadar aklınıza gelen pek çok yerde... Tabii ki bu gelişme amatör telsizcilik alanında da kendini göstermekte gecikmedi. "Baba" firmaların ürettikleri çok kaliteli anahtarlamalı güç kaynakları bir yana tutulursa, PC güç kaynağından amatör telsiz güç kaynağı yapmak pek bir revaç görmeye başladı. Elbette gürültü ölçümü yapmadan. Zaten gürültü dediğin nedir ki! :)

"Yahu artık bu eskiden kalma, modifiye cihazlardan bıktım. Şöyle iki küçük cihazla amatör sancılarımı dindirebilirim." noktasına geldikten sonra HF+50 MHz için bir Yaesu FT-891 aldım. VHF ve UHF kısmı için de -Yaesu FT8900 klonu- bir TYT TH9800 aldım. TH9800 10m, 6m, 2m ve 70 cm bandlarında çalışabilen ilginç bir cihaz.  Böylece 30 kHz ilâ 950 MHz arası emrime amade hâle geldi.

Peki bu cihazları neyle, nasıl besleyecektim? Kaliteli güç kaynakları oldukça pahalı olduğundan kafamda bir doğrusal güç kaynağı yapma fikri vardı. Konuyu bir arkadaşımla konuşurken anahtarlamalı güç kaynağı tavsiye etti; hatta bir iyilik yapıp 2 adet HP ESP113 anahtarlamalı güç kaynağı hediye etti! 12v'ta 32 amper verebilen bu güç kaynağını kolayca yapılabilecek bir modifikasyonla 13.8v'a çıkarmak mümkündü, ben de öyle yaptım. Bu güç kaynağı sunucular için tasarlandığından, iyi bir soğutma için oldukça güçlü ve bir o kadar da gürültülü bir fan'ı vardı. Bu fan, sürekli çalışıyordu. Cep telefonu ile yaptığım ölçümde fanın gürültü seviyesi 67dB idi! Dayanılması zor bir ses! İnternette, fan'ın (+) beslemesine seri bir adet 4.7v'luk zener diyot bağlamak şeklinde bir öneri okuyup uyguladım ve gürültü seviyesi 50 dB'ye indi. 

Akım denemelerine başladım. Yaesu FT-891 alma modunda ortalama 1A akım çekiyor. Bağladım HP anahtarlamalı güç kaynağına. 5-10 dakika sonra güç kaynağı kapandı. Tekrar tekrar denedim, bir müddet sonra güç kaynağı kapanıyordu. Fan modifikasyonu yapmadığım diğer HP güç kaynağı ile deneme yaptım, kapanma olmuyordu, ama gürültü dayanılır gibi değildi..

Böylece ağır, hantal, ısınan doğrusal güç kaynağı yapma fikrine tekrar döndüm. Peki bana ne kadar amper gerekli idi? FT-891'in kitapçığında tam güçte 23A gerekli olduğu yazıyordu. 

OH8STN çağrı işaretli amatör telsizcinin yaptığı deneyde ( https://www.youtube.com/watch?v=H1aShLDZcFg ) ise güç ihtiyacı şöyle çıkıyor:



Tam güçte (yani 100W'ta) 15.2A! Ben cihazı hiç bir zaman tam güçte kullanmayı düşünmediğimden, azamî 15A'lik bir güç kaynağının yeterli olacağını düşünerek, araştırmaya başladım. Elimde eski yıllarda TEKNİM'in sardırdığı devasa bir trafo vardı. Devreyi kutulayabilmek için oldukça büyük bir kutu gerekiyordu. Sonunda, trafoyu ve güç kaynağı devresini ayrı ayrı kutulamaya karar verdim. Kutu olarak Altınkaya'nın 12.6cm x 25.8cm x 14.5cm ebadındaki DT-410 kodlu laboratuvar güç kaynağı kutusunu kullanmayı düşünüp ona göre tasarım yapmayı düşündüm.

Elimde bulunan ve üzerinde 4 adet TO-3 transistörü için delikler bulunan 15cmx 10cm büyüklüğündeki kanatlı soğutucuyu kullanmaya karar verdim; kutuya sığmadığı için uzunluğundan 5mm'yi kesmek şartıyla!

Soğutucum nisbeten küçük olduğundan, bir de izolatör ile verimi düşürmemek için kullanacağım transistörlerin kollektörlerini soğutucudan izole etmeden kullanabilmek için güç kaynağının negatif kutbunu regüle etmenin daha uygun olacağını düşündüm.  TA5THG çağrı işaretli "Tamirci Hasan Gonya"nın bir çalışmasını esas alarak, aynı gerekçelerle regülasyon için LM337 kullanmaya karar verdim. 

Ama aldığım her iki LM337 de (ON yani Motorola üretimi olmalarına rağmen) nazlanıp bende çalışmadı. Bunun üzerine 7912 kullanmaya karar verdim.

Yaptığım devrenin ilk test sonuçları şöyle:

1. deney:

Yaesu FT-891 alma modunda 1 amper akım çektiğinden önce 1,1 amper çeken bir yükle 10 dakikalık bir deney yaptım. Başlangıçta soğutucunun sıcaklığı 26,8 derece iken, her dakikada 1 derecelik artış gösterdi. 8. dakikada 34 derece civarında fan devreye girince, sıcaklık 10. dakikaya kadar 34,5 derecede sâbit kaldı.

2. Deney:

Yaesu FT-891, QRP olarak 5W'ta çalıştırıldığında 5,7 amper akım çektiğinden, 2. deneyi 6,06 amper çeken bir yükle yaptım. Başlangıçta soğutucu 24,6 derece iken ilk 4 dakikada her dakika başına 3 derecelik bir artış gösterdi. 4. dakikada fanın devreye girmesiyle birlikte neredeyse sâbit kaldı, hatta 1 derece düşerek 10. dakikaya ulaştı. 5W ile 10 dakikalık bir göndermeden sonra almaya geçince durum ne olacak diye merak ettim; sonraki 4 dakika boyunca sıcaklık 34 derece civarında sâbit kaldı.

Şimdi sıra 10 amper ve 15 amper deneylerinde.

3. Deney:


3. deneyi 10.4 amper çekerek yaptım. 34,2 derece ile başlayan testte 5 dakika süreyle  10.4 amper çektiğimde fanla birlikte sıcaklık 35,3 dereceye kadar yükseldi. Sonra 5 dakika süreyle 1.1 amper çektiğimde sıcaklık 33,9 dereceye düştü. Sonraki 10 dakika boyunca sürekli 10.4 amper akım çektim. Soğutucu sıcaklığı 36,9 dereceye kadar yükseldi. Daha sonra 40 dakika boyunca 1.1 amper çektim. Toplam 1 saatlik çalışma sonunda soğutucunun sıcaklığı 33,9 derece idi. 10.4 amper akım FT-891'de 40W çıkış gücü üretmek için gerekli besleme gücüne denk düşüyordu.
Yukarıdaki doğrusal güç kaynağının yapım bilgilerine  https://qsl.net/ta2ei sayfasından ulaşabilirsiniz.

İletişim bilgisi

 Zaman zaman -benim çok az kullandığım vasıtalarla- ileti göndererek benimle iletişime geçmek isteyenler olduğunu görüyorum. Bana şu e-posta...